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Abstract
The distribution of distance in the sphere is reviewed. The distribution of
distance in the ellipsoid is given as an integral which can be done in terms
of elementary functions for the spheroid. As an application, Maclaurin’s ratio
of the polar to equatorial radius of the Earth due to its rotation is rederived
using the distribution found here.

PACS numbers: 02.50.−r, 04.40.−b, 46.15.−x, 91.10.−v

1. Introduction

In physics, the potential energy of a body is, very often, the sum of the potential energies of
its pairs of parts or particles. From a computational point of view, this means that we have
to do a six-dimensional integral. But if the distribution of distance of the body is known
then only a one-dimensional integral is necessary. This increases the numerical precision
by many orders of magnitude and allows the computation of potential energies in instances
where a straightforward approach would be too costly. Applications to nuclear physics and
electrostatics based on this idea have been discussed recently [1–4]. Some of these authors
have also applied the distribution of distance to the testing of random number generators
[5, 4].

Computation of potential energy is the main application of the distribution of distance to
physics, but not the only one, the analysis of mobile radio systems [6] being another.

The topic has, of course, intrinsic mathematical interest and has been attracting
mathematicians for some time. There is a branch of mathematics which is, loosely speaking,
an outgrowth of Buffon’s needle problem (1777) and Bertrand’s paradox (1907) and which
is called integral geometry or geometric probability [7–9]. This branch, which attracted the
attention of Poincaré and Mark Kac (see the foreword to the book by Santaló [8]), has dealt
with the problem of distribution of distance.
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A number of authors have found the distribution of distance of some geometrical figures
starting, to the best of our knowledge, in 1919 [10], when the distribution of distance for the
sphere was found.

Other references [11–21], as well as a historical overview of the problem of distribution
of distance (with especial emphasis on its applications to geography) are given in the doctoral
dissertation of de Smith [22]. These references, as can be read in their titles, cover the
rectangle, the n-dimensional sphere, concentric shells of different densities [1, 5] and the
triangle [15]. Moments of distance distributions are found in [5] as well as in an interesting
web page on the subject [23].

In this paper, we rederive, for the sake of self-containedness, the distribution of distance
in the sphere (section 2). New results are: (1) an integral expression for the distribution of
distance of the ellipsoid (section 3); (2) an expression in terms of elementary functions for an
ellipsoid two of whose axes have equal length (also called ‘spheroid’) (section 4); (3) as an
application, a result on the shape of the Earth, obtained by Maclaurin in 1732, is derived here
in a new way (section 5).

It should be stressed that the distribution of distances in a geometrical body is directly
relevant to a physical body only under the assumption that the latter has homogeneous density.
As explained in the last paragraph of section 3, the results in this paper are also pertinent to
some inhomogeneous distributions of physical density.

2. Spheres

2.1. Discs

The probability density ρ(�) for the distance between two randomly chosen points inside a
domain D to be � is

ρ(�) =
∫
D

d�y ∫
D

d�x δ(| �x − �y| − �)∫
D

d�y ∫
D

d�x . (1)

In two dimensions, the numerator can also be written as follows. Consider a circumference
of radius � about �x, where �x lies in D. Let us denote by O(�x, �) the length of its overlap with
D. Then the numerator can be written as∫

D

d�xO(�x, �). (2)

We have obtained the above expression by a two-dimensional argument, but it holds for any
dimension n, provided that the word ‘circumference’ is substituted by ‘(n − 1)-dimensional
spherical shell’ and the word ‘length’ by ‘n − 1 area’.

For a disc of radius 1,
∫
D

d�xO(�x, �) = 2π
∫ 1

0 dxxO(x, �), where x ≡ |�x|. It is clear that,
for x + � < 1,O(x, �) = 2π� (the smaller circle of figure 1). When � < 1, there are two
other cases (we take � to be fixed and let x vary). In the first (figure 2(a)), it is the largest piece
of the circumference of radius � that is O(x, �); in the second (figure 2(b)) it is the smallest
piece. In either case the length of the circumference of radius � about �x which is inside the
disc is 2

(
π − arccos 1−x2−�2

2x�

)
, provided that we choose the arccos function whose range is

[0, π ]. Taking into account that the denominator in equation (1) is simply the square of the
area, π2, we can now compute ρ for the disc:

ρ(�) = 2π

π2

∫ 1

0
dx xO(x, �) = 4�

∫ 1−�

0
dx x +

4�

π

∫ 1

1−�

dx x

(
π − arccos

1 − x2 − �2

2x�

)
.

(3)
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Figure 1. The case x + � < 1.
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Figure 2. (a) The longest piece of the circumference of radius � is the one that is O(x, �). (b) The
shortest piece of the circumference of radius � is the one that is O(x, �).

The first integral is straightforward and the second can be done by parts:

ρ(�) = 4�

π
arccos

�

2
− 2�2

π

√
1 − �2

4
. (4)

The result for a disc of radius r follows from dimensional analysis:

ρ(�) = 4�

πr2
arccos

�

2r
− 2�2

πr4

√
r2 − �2

4
. (5)

In figure 3, we have plotted the probability density ρ. It is a bell-shaped curve whose
mode is twice the root of arccos x = 3x

√
1 − x2 (≈ 0.836 222) and mean 128

45π
≈ 0.9054.
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Figure 3. Probability densities for the disc (the fatter one) and the sphere (the taller one). The
horizontal axis goes from 0 to 2, the range of distances in the unit disc or sphere.

2.2. Spheres

For the sphere we have to imagine that figures 1, 2(a) and (b) revolve around the horizontal
diameter. Now we want to find not the length of the arc of radius �, but the surface of the
corresponding spherical cap. The area of a spherical outside of the sphere can be readily found
to be 2π(1 − cos arccos 1−x2−�2

2xd
) = 2π( (x+�)2−1

2x�
). We proceed as in the disc:

ρ(�) = 4π

(4π/3)2

∫ 1

0
dx x2O(x, �)

= 4π

(4π/3)2

∫ 1−�

0
dx x24π�2 +

4π

(4π/3)2

∫ 1

1−�

dx x2

(
4π − 2π

(
(x + �)2 − 1

2x�

)
�2

)

= 3

16
(� − 2)2�2(� + 4). (6)

Early references on this result are [10–12, 14]. This probability density is plotted in
figure 3. Its mode,

√
105
5 − 1 = 1.049 . . . is now greater than its mean, 36

35 =
1.028 571 428 5714 . . . .

3. The ellipsoid: a geometrical derivation

An ellipse is nothing but a circle which has been stretched by a factor (e.g., λ) along some
direction (e.g., the x direction). Consider any given distance �. In the circle, � appears as the
distance between, say, the points (x, y) and (x ′, y ′), which is

√
(x − x ′)2 + (y − y ′)2. Upon

stretching this distance becomes
√

λ2(x − x ′)2 + (y − y ′)2. Due to the symmetry of the circle,
the distance � will thus transform into the distance �

√
(sin α)2 + λ2(cos α)2 with probability

density 2/π . If we define fλ(α) =
√

(sin α)2 + λ2(cos α)2, then the probability density that �

is the distance between two randomly chosen points of an ellipse of semiaxes 1 and λ is

ρλ(�) = 2

π

∫ π
2

0
dα

∫ 2

0
dx ρ(x)δ(xfλ(α) − �) = 2

π

∫ π
2

0
dα

1

fλ(α)
ρ

(
�

fλ(α)

)
, (7)

where ρ is the distances’ probability density of the unit circle found earlier (equation (5)).
One can repeat the above argument in a higher dimension and obtain the distances’

probability density for an ellipsoid of semiaxes 1, λ and µ. Due to the relative simplicity and
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importance in gravitation and nuclear physics of this formula, we write it in detail:

ρλ,µ(�) = 2

π

∫ π
2

0
dθ sin θ

∫ π
2

0
dϕ

1√
(λ2 cos2 ϕ + µ2 sin2 ϕ) sin2 θ + cos2 θ

× ρ

(
�√

(λ2 cos2 ϕ + µ2 sin2 ϕ) sin2 θ + cos2 θ

)
, (8)

where

ρ(x) = 3

16
(x − 2)2x2(x + 4), (6)

for x in [0, 2], and 0 for x outside it (do not forget this when substituting in the expression
for ρλ,µ(�)!). Formula (8), though not exactly simple, should be compared with its numerical
alternative, which involves sampling over a six-dimensional space (the Cartesian product
of two ellipsoids). The integrand of formula (8) is more complicated than the distance,
which would be the ‘integrand’ in the straightforward numerical method. However, for any
meaningful precision, the fact that the above expression involves a two-dimensional integral,
as opposed to a six-dimensional one, makes it numerically much more efficient.

Actually, formula (8) can be integrated over θ to yield a one-dimensional integral of
elementary functions, but we think that it would be lengthy, but not illuminating, to write it.

It is important to realize that formulae (7) and (8) give the probability density of distance,
ρλ,µ, of any distribution of physical density with ellipsoidal symmetry provided that its
corresponding spherical probability density of distance, ρ, is known. We have focused here in
the case in which ρ is the probability density of distance for the homogeneous sphere, but the
formulae can be applied to other spherically symmetric ρs which have been studied: the case
of an isotropic Gaussian [1, 5] and the case of a sphere made of spherical shells of different
densities [1, 5].

4. Distribution of distance in the spheroid

For the case µ = λ (called the ‘spheroid’) an expansion in powers of the eccentricity was
obtained recently [2]. In this section, we find the distribution for this case in terms of
elementary functions.

When µ = λ, expression (8) becomes

ρλ,λ(�) =
∫ π

2

0
dθ sin θ

1√
λ2 sin2 θ + cos2 θ

ρ

(
�√

λ2 sin2 θ + cos2 θ

)

=
∫ 1

0
dx

1√
λ2(1 − x2) + x2

ρ

(
�√

λ2(1 − x2) + x2

)
. (9)

To do the integration we redefine ρ as

ρ(x) = 3

16
(x − 2)2x2(x + 4) for all x. (10)

Then:

ρλ,λ(�) =




∫ 1

0
dx

1√
λ2 + (1 − λ2)x2

ρ
( �√

λ2 + (1 − λ2)x2

)
when 0 < � < 2

∫ 1
2

√
4λ2−�2

λ2−1

0
dx

1√
λ2 + (1 − λ2)x2

ρ
( �√

λ2 + (1 − λ2)x2

)
when 2 < � < 2λ

(11)
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so that the argument of ρ is always smaller than 2. Both integrals can be expressed in terms
of elementary functions:

The first integral (valid when � < 2) is

12

(
�

2λ

)2

− 9

(
λ +

ln(λ +
√

λ2 − 1)√
λ2 − 1

) (
�

2λ

)3

+
3

4

(
λ(3 + 2λ2) + 3

ln(λ +
√

λ2 − 1)√
λ2 − 1

) (
�

2λ

)5

(12)

and the second one (valid when 2 < � < 2λ) is

9�

128λ5
√

λ2 − 1

[
2λ

√
4λ2 − d2(8λ2 + �2) + �2(�2 − 16λ2) ln

(
2λ +

√
4λ2 − �2

d

)]
. (13)

It is obvious that the first integral can be simplified if written in terms of the variable a ≡ �/2λ.
The second integral can be simplified if written in terms of the variable b ≡ (�/2λ)2:

9
√

b

4
√

λ2 − 1

[√
1 − b(2 + b) + b(b − 4) ln

(
1 +

√
1 − b√
b

)]
. (14)

5. A spheroidal approximation to the shape of the earth

A non-rotating mass adopts a spherical shape due to gravitation. When the mass rotates,
the centrifugal force pushes the mass away form the axis of rotation. In equilibrium these
two forces balance. In terms of a potential, the configuration of equilibrium will minimize
the potential. In this section, we are going to find this configuration of equilibrium for a
self-gravitating fluid of constant density which rotates without differential rotation and adopts
an ellipsoidal shape.

The expected value of 1/� of a distribution of mass or charge is, up to a constant, its
gravitational or electrostatic potential energy. For the spheroid of homogeneous density we
can compute it from formula (11) or, better yet, from the expressions (12) and (14). These
two contributions are, respectively:∫ 2

0
d�

ρ(�)

�
= 3λ

√
λ2 − 1(3 + 22λ2) + (9 − 60λ2) arg tanh

√
λ2−1
λ

20λ5
√

λ2 − 1
, (15)

and∫ 2λ

2
d�

ρ(�)

�
= −3λ

√
λ2 − 1(3 + 22λ2) − (9 − 60λ2) arg tanh

√
λ2−1
λ

20λ5
√

λ2 − 1
+

3π − 6 arcsin 1
λ

5
√

λ2 − 1
,

(16)

which add up to

3π − 6 arcsin 1
λ

5
√

λ2 − 1
. (17)

To obtain the gravitational potential energy of a spheroid whose short semiaxis is R
and whose long semiaxes are λR, we multiply the above expression by 1

2M2 G
R

. The factor
1
2 prevents overcounting, the mass squared M2 takes care of the normalization, G is the
gravitational constant and 1

R
measures the distance in the appropriate units. The result is

Vgr(λ) = M2 G

R

(
3π − 6 arcsin 1

λ

)
10

√
λ2 − 1

. (18)
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One can check, using l’Hôpital’s rule, that the above expression yields the correct result,
3
5M2 G

R
, for the gravitational self-energy of a sphere.

Suppose that a self-gravitating fluid of constant density ρ rotates without differential
rotation and adopts an ellipsoidal shape. Which one would it be? Due to the symmetry of the
problem we assume that the searched ellipsoid is a spheroid whose short (‘vertical’) semiaxis
measures R and whose two other semiaxes measure λR. The constraint

M = ρ 4
3πR3λ2 (19)

implies

R = 3

√
3M

4πρλ2
. (20)

Substitution of this constraint into formula (18) yields

Vgr(λ) = GM5/3

(
3π − 6 arcsin 1

λ

)
((4/3)πρ)1/3λ2/3

10
√

λ2 − 1
. (21)

We also have to take the centrifugal acceleration, ω2r into account. It is convenient to
pretend that the centrifugal force has its origin in a potential equal to the mass times ω2r2/2.
Then, the centrifugal potential energy of a disc of radius r is∫ r

0
dr ′ 2πr ′ ρ

2
ω2r ′2 = πρω2

4
r4. (22)

For a spheroid whose equation in cylindrical coordinates is (z/R)2 + (r/λR)2 = 1, its
centrifugal potential energy is

πρω2

4
λ4

∫ R

−R

dz(R2 − z2)2 = πρω2

4
λ4 16

15
R5 = Mω2λ2R2

5
. (23)

Substitution of the constraint (20) into the above formula yields

Vcentr(λ, ω) = M5/3ω2λ2/3

5
(
(4/3)πρ

)2/3 . (24)

For a given angular velocity the gravitational potential energy increases as the fluid
becomes more oblate, while the centrifugal potential energy diminishes. There must be then
an equilibrium oblateness. To find it we set the derivative with respect to λ of the potential

V (λ, ω) ≡ Vgr(λ) + Vcentr(λ, ω) (25)

equal to zero. One can solve analytically for ω:

ω2

Gπρ
= (2 + λ2)

(
π − 2 arcsin 1

λ

)
(λ2 − 1)3/2

− 6

λ2 − 1
. (26)

This formula was found by Maclaurin in 1742, who obtained it from the condition
of hydrostatic equilibrium of two hypothetical columns of fluid, one polar and the other
equatorial, who join at the centre of the Earth [24], pages 3 and 78.
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